首页> 外文OA文献 >Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5
【2h】

Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5

机译:人类延迟整流器K +通道Kv1.5中细胞内和细胞外K +对瞬时Na +电导的调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Significant Na+ conductance has been described in only a few native and cloned K+ channels, but has been used to characterize inactivation and K+ binding within the permeation pathway, and to refine models of K+ flux through multi-ion pores. Here we use Na+ permeation of the delayed rectifier K+ channel Kv1.5 to study extra- and intracellular K+ (K o+ and K i+, respectively) regulation of conductance and inactivation, using whole-cell recording from human embryonic kidney (HEK)-293 cells.Kv1.5 Na+ currents in the absence of K o+ and K i+ were confirmed by: (i) resistance of outward Na+ currents to dialysis by K+-free solutions; (ii) tail current reversal potential changes with N o+ with a slope of 55·8 mV per decade; (iii) block by 4-aminopyridine (50 % at 50 μM), and resistance to Cl− channel inhibition.Na+ currents were transient followed by a small sustained current. An envelope test confirmed that activated Kv1.5 channels conducted Na+, and that rapid current decay reflected C-type inactivation. Sustained currents (≈13 % of peak) represented Na+ flux through inactivated Kv1.5 channels.K o+ could modulate the maximum available Na+ conductance in the stable cell line while channels were closed. Before the first pulse of a train, increasing K o+ concentration increased the subsequent Na+ conductance from ≈15 (0 mM K o+) to 30 nS (5 mM K o+), with a Kd of 23 μM. Repeated low rate depolarizations in N i+/N o+ solutions induced a use-dependent loss of Kv1.5 channel Na+ conductance, distinct from that caused by C-type inactivation. K o+ binding that sensed little of the electric field could prevent this secondary loss of available Kv1.5 channels with a Kd of 230 μM. These two effects on conductance were both voltage independent, and had no effect on channel inactivation rate.K o+ concentrations ≥ 0·3 mM slowed the inactivation rate in a strongly voltage-dependent manner. This suggested it could compete for binding at a K+ site or sites deeper in the pore, as well as restoring the Na+ conductance. K i+ was able to modulate the inactivation rate but was unable to affect conductance.Mutation of arginine 487 in the outer pore region of the channel to valine (R487V) greatly reduced C-type inactivation in Na+ solutions, caused loss of channel use dependence, and prevented any conductance increase upon the addition of 0·1 mM K o+. Our results confirm the existence of a high affinity binding site at the selectivity filter that regulates inactivation, and also reveals the presence of at least one additional high affinity outer mouth site that predominantly regulates conductance of resting channels, and protects channels activated by depolarization when they conduct Na+.
机译:仅在少数天然和克隆的K +通道中描述了重要的Na +电导率,但已将其用于表征渗透途径中的失活和K +结合,以及完善了通过多离子孔的K +通量的模型。在这里,我们使用延迟整流器K +通道Kv1.5的Na +渗透率,使用人类胚胎肾脏(HEK)-293的全细胞记录来研究电导和失活的细胞外和细胞内K +(分别为Ko +和Ki +)调节通过不存在Ko +和Ki +的情况下的Kv1.5 Na +电流可以通过以下方式得到证实:(i)向外的Na +电流对无K +溶液透析的抵抗力; (ii)尾电流的反向电势变化为No +,每十年的斜率为55·8 mV; (iii)被4-氨基吡啶(50μM时为50%)阻滞,并且对Cl-通道抑制具有抗性.Na +电流是瞬态的,随后是小的持续电流。包络测试证实,激活的Kv1.5通道传导Na +,并且快速的电流衰减反映了C型失活。持续的电流(峰值的约13%)表示通过灭活的Kv1.5通道的Na +通量.Ko +可以调节通道关闭时稳定细胞系中的最大可用Na +电导率。在火车的第一个脉冲之前,增加K +的浓度会使随后的Na +电导率从≈15(0 mM K o +)增加到30 nS(5 mM K o +),Kd为23μM。在N i + / N o +溶液中反复发生低速率去极化会导致Kv1.5通道Na +电导的使用依赖性损失,这与C型失活引起的损失不同。感应不到电场的Ko +结合可以防止Kd为230μM的可用Kv1.5通道的二次损失。这两种对电导的影响都与电压无关,并且对通道失活速率没有影响.K o +浓度≥0·3 mM以强烈的电压依赖性方式减慢了失活速率。这表明它可以竞争在K +位点或孔深处的结合,并恢复Na +电导率。 K i +能够调节失活速率,但不能影响电导。将通道外孔区域的精氨酸487突变为缬氨酸(R487V)可以大大减少Na +溶液中的C型失活,从而导致通道使用依赖性的丧失,并防止在添加0·1 mM K o +时电导增加。我们的结果证实了选择性过滤器上存在一个高亲和力结合位点,该位点可调节失活,并且还揭示了至少存在一个另外的高亲和力外口位点,该位点主要调节静息通道的电导率,并保护通过去极化激活的通道。进行Na +。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号